Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Anaesthesia ; 77(11): 1193-1196, 2022 11.
Article in English | MEDLINE | ID: covidwho-2084600

Subject(s)
Air Pollutants , Aerosols , Humans
2.
Anaesthesia ; 77(9): 959-970, 2022 09.
Article in English | MEDLINE | ID: covidwho-1948977

ABSTRACT

The evidence base surrounding the transmission risk of 'aerosol-generating procedures' has evolved primarily through quantification of aerosol concentrations during clinical practice. Consequently, infection prevention and control guidelines are undergoing continual reassessment. This mixed-methods study aimed to explore the perceptions of practicing anaesthetists regarding aerosol-generating procedures. An online survey was distributed to the Membership Engagement Group of the Royal College of Anaesthetists during November 2021. The survey included five clinical scenarios to identify the personal approach of respondents to precautions, their hospital's policies and the associated impact on healthcare provision. A purposive sample was selected for interviews to explore the reasoning behind their perceptions and behaviours in greater depth. A total of 333 survey responses were analysed quantitatively. Transcripts from 18 interviews were coded and analysed thematically. The sample was broadly representative of the UK anaesthetic workforce. Most respondents and their hospitals were aware of, supported and adhered to UK guidance. However, there were examples of substantial divergence from these guidelines at both individual and hospital level. For example, 40 (12%) requested respiratory protective equipment and 63 (20%) worked in hospitals that required it to be worn whilst performing tracheal intubation in SARS-CoV-2 negative patients. Additionally, 173 (52%) wore respiratory protective equipment whilst inserting supraglottic airway devices. Regarding the use of respiratory protective equipment and fallow times in the operating theatre: 305 (92%) perceived reduced efficiency; 376 (83%) perceived a negative impact on teamworking; 201 (64%) were worried about environmental impact; and 255 (77%) reported significant problems with communication. However, 269 (63%) felt the negative impacts of respiratory protection equipment were appropriately balanced against the risks of SARS-CoV-2 transmission. Attitudes were polarised about the prospect of moving away from using respiratory protective equipment. Participants' perceived risk from COVID-19 correlated with concern regarding stepdown (Spearman's test, R = 0.36, p < 0.001). Attitudes towards aerosol-generating procedures and the need for respiratory protective equipment are evolving and this information can be used to inform strategies to facilitate successful adoption of revised guidelines.


Subject(s)
COVID-19 , Personal Protective Equipment , Anesthetists , COVID-19/prevention & control , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2
3.
J Hosp Infect ; 124: 13-21, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1882202

ABSTRACT

BACKGROUND: Open respiratory suctioning is defined as an aerosol generating procedure (AGP). Laryngopharyngeal suctioning, used to clear secretions during anaesthesia, is widely managed as an AGP. However, it is uncertain whether upper airway suctioning should be designated as an AGP due to the lack of both aerosol and epidemiological evidence. AIM: To assess the relative risk of aerosol generation by upper airway suctioning during tracheal intubation and extubation in anaesthetized patients. METHODS: This prospective environmental monitoring study was undertaken in an ultraclean operating theatre setting to assay aerosol concentrations during intubation and extubation sequences, including upper airway suctioning, for patients undergoing surgery (N=19). An optical particle sizer (particle size 0.3-10 µm) sampled aerosol 20 cm above the patient's mouth. Baseline recordings (background, tidal breathing and volitional coughs) were followed by intravenous induction of anaesthesia with neuromuscular blockade. Four periods of laryngopharyngeal suctioning were performed with a Yankauer sucker: pre-laryngoscopy, post-intubation, pre-extubation and post-extubation. FINDINGS: Aerosol was reliably detected {median 65 [interquartile range (IQR) 39-259] particles/L} above background [median 4.8 (IQR 1-7) particles/L, P<0.0001] when sampling in close proximity to the patient's mouth during tidal breathing. Upper airway suctioning was associated with a much lower average aerosol concentration than breathing [median 6.0 (IQR 0-12) particles/L, P=0.0007], and was indistinguishable from background (P>0.99). Peak aerosol concentrations recorded during suctioning [median 45 (IQR 30-75) particles/L] were much lower than during volitional coughs [median 1520 (IQR 600-4363) particles/L, P<0.0001] and tidal breathing [median 540 (IQR 300-1826) particles/L, P<0.0001]. CONCLUSION: Upper airway suctioning during airway management was not associated with a higher aerosol concentration compared with background, and was associated with a much lower aerosol concentration compared with breathing and coughing. Upper airway suctioning should not be designated as a high-risk AGP.


Subject(s)
Airway Extubation , Cough , Aerosols , Airway Extubation/methods , Humans , Intubation, Intratracheal , Prospective Studies
4.
British Journal of Anaesthesia ; 128(2):e63-e64, 2022.
Article in English | ScienceDirect | ID: covidwho-1615530
5.
Anaesthesia ; 77(1): 22-27, 2022 01.
Article in English | MEDLINE | ID: covidwho-1483808

ABSTRACT

Manual facemask ventilation, a core component of elective and emergency airway management, is classified as an aerosol-generating procedure. This designation is based on one epidemiological study suggesting an association between facemask ventilation and transmission during the SARS-CoV-1 outbreak in 2003. There is no direct evidence to indicate whether facemask ventilation is a high-risk procedure for aerosol generation. We conducted aerosol monitoring during routine facemask ventilation and facemask ventilation with an intentionally generated leak in anaesthetised patients. Recordings were made in ultraclean operating theatres and compared against the aerosol generated by tidal breathing and cough manoeuvres. Respiratory aerosol from tidal breathing in 11 patients was reliably detected above the very low background particle concentrations with median [IQR (range)] particle counts of 191 (77-486 [4-1313]) and 2 (1-5 [0-13]) particles.l-1 , respectively, p = 0.002. The median (IQR [range]) aerosol concentration detected during facemask ventilation without a leak (3 (0-9 [0-43]) particles.l-1 ) and with an intentional leak (11 (7-26 [1-62]) particles.l-1 ) was 64-fold (p = 0.001) and 17-fold (p = 0.002) lower than that of tidal breathing, respectively. Median (IQR [range]) peak particle concentration during facemask ventilation both without a leak (60 (0-60 [0-120]) particles.l-1 ) and with a leak (120 (60-180 [60-480]) particles.l-1 ) were 20-fold (p = 0.002) and 10-fold (0.001) lower than a cough (1260 (800-3242 [100-3682]) particles.l-1 ), respectively. This study demonstrates that facemask ventilation, even when performed with an intentional leak, does not generate high levels of bioaerosol. On the basis of this evidence, we argue facemask ventilation should not be considered an aerosol-generating procedure.


Subject(s)
Masks , Respiratory Aerosols and Droplets/chemistry , Adult , Aged , Cough/etiology , Female , Humans , Male , Middle Aged , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology
6.
Anaesthesia ; 76(12): 1577-1584, 2021 12.
Article in English | MEDLINE | ID: covidwho-1318625

ABSTRACT

Many guidelines consider supraglottic airway use to be an aerosol-generating procedure. This status requires increased levels of personal protective equipment, fallow time between cases and results in reduced operating theatre efficiency. Aerosol generation has never been quantitated during supraglottic airway use. To address this evidence gap, we conducted real-time aerosol monitoring (0.3-10-µm diameter) in ultraclean operating theatres during supraglottic airway insertion and removal. This showed very low background particle concentrations (median (IQR [range]) 1.6 (0-3.1 [0-4.0]) particles.l-1 ) against which the patient's tidal breathing produced a higher concentration of aerosol (4.0 (1.3-11.0 [0-44]) particles.l-1 , p = 0.048). The average aerosol concentration detected during supraglottic airway insertion (1.3 (1.0-4.2 [0-6.2]) particles.l-1 , n = 11), and removal (2.1 (0-17.5 [0-26.2]) particles.l-1 , n = 12) was no different to tidal breathing (p = 0.31 and p = 0.84, respectively). Comparison of supraglottic airway insertion and removal with a volitional cough (104 (66-169 [33-326]), n = 27), demonstrated that supraglottic airway insertion/removal sequences produced <4% of the aerosol compared with a single cough (p < 0.001). A transient aerosol increase was recorded during one complicated supraglottic airway insertion (which initially failed to provide a patent airway). Detailed analysis of this event showed an atypical particle size distribution and we subsequently identified multiple sources of non-respiratory aerosols that may be produced during airway management and can be considered as artefacts. These findings demonstrate supraglottic airway insertion/removal generates no more bio-aerosol than breathing and far less than a cough. This should inform the design of infection prevention strategies for anaesthetists and operating theatre staff caring for patients managed with supraglottic airways.


Subject(s)
Airway Extubation/standards , Environmental Monitoring/standards , Intubation, Intratracheal/standards , Operating Rooms/standards , Particle Size , Supraglottitis/therapy , Airway Extubation/methods , Airway Management/methods , Airway Management/standards , Cough/therapy , Environmental Monitoring/methods , Humans , Intubation, Intratracheal/methods , Operating Rooms/methods , Personal Protective Equipment/standards , Prospective Studies
8.
9.
Anaesthesia ; 76(2): 174-181, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-817594

ABSTRACT

The potential aerosolised transmission of severe acute respiratory syndrome coronavirus-2 is of global concern. Airborne precaution personal protective equipment and preventative measures are universally mandated for medical procedures deemed to be aerosol generating. The implementation of these measures is having a huge impact on healthcare provision. There is currently a lack of quantitative evidence on the number and size of airborne particles produced during aerosol-generating procedures to inform risk assessments. To address this evidence gap, we conducted real-time, high-resolution environmental monitoring in ultraclean ventilation operating theatres during tracheal intubation and extubation sequences. Continuous sampling with an optical particle sizer allowed characterisation of aerosol generation within the zone between the patient and anaesthetist. Aerosol monitoring showed a very low background particle count (0.4 particles.l-1 ) allowing resolution of transient increases in airborne particles associated with airway management. As a positive reference control, we quantitated the aerosol produced in the same setting by a volitional cough (average concentration, 732 (418) particles.l-1 , n = 38). Tracheal intubation including facemask ventilation produced very low quantities of aerosolised particles (average concentration, 1.4 (1.4) particles.l-1 , n = 14, p < 0.0001 vs. cough). Tracheal extubation, particularly when the patient coughed, produced a detectable aerosol (21 (18) l-1 , n = 10) which was 15-fold greater than intubation (p = 0.0004) but 35-fold less than a volitional cough (p < 0.0001). The study does not support the designation of elective tracheal intubation as an aerosol-generating procedure. Extubation generates more detectable aerosol than intubation but falls below the current criterion for designation as a high-risk aerosol-generating procedure. These novel findings from real-time aerosol detection in a routine healthcare setting provide a quantitative methodology for risk assessment that can be extended to other airway management techniques and clinical settings. They also indicate the need for reappraisal of what constitutes an aerosol-generating procedure and the associated precautions for routine anaesthetic airway management.


Subject(s)
Aerosols , Airway Extubation , COVID-19/transmission , Intubation, Intratracheal , Airway Management , Anesthesia , Anesthetists , Cough , Environmental Monitoring , Humans , Operating Rooms , Particle Size , Patients , Personal Protective Equipment , Prospective Studies , Respiration, Artificial , SARS-CoV-2 , Ventilation
SELECTION OF CITATIONS
SEARCH DETAIL